Skip to main content
Log in

Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silica aerogel composites reinforced with different aramid fibres have been synthesized and compared considering their potential use in thermal protection systems of Space devices. These composites were prepared from tetraethoxysilane and vinyltrimethoxysilane and the network was strengthened with aramid fibres. The results showed that the physical and chemical properties of the fibres were relevant, leading to composites with different properties/performance. In general, the obtained values for bulk density were low, down to 150 kg m−3. Very good thermal properties were achieved, reaching thermal conductivities bellow 30 mW m−1 K−1, and thermal stability up to 550 °C in all cases. Short length fibres produce stiffer composites with lower thermal conductivities, while among longer fibres, meta-aramid-containing fibres lead to nanocomposites with best insulation performance. Standard tests for Space materials qualification, as thermal cycling and outgassing, were conducted to assess the compliance with Space conditions, confirming the suitability of these aerogel composites for this application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  2. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310

    Article  Google Scholar 

  3. Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46(2–3):111–117

    Article  CAS  Google Scholar 

  4. Sabri F, Marchetta J, Smith K (2013) Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space. Acta Astronaut 91:173–179

    Article  CAS  Google Scholar 

  5. Durães L, Maleki H, Vareda JP, Lamy-Mendes A, Portugal A (2017) Exploring the versatile surface chemistry of silica aerogels for multipurpose application. MRS Adv 2(57):3511–3519

    Article  Google Scholar 

  6. Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: An overview. J Mater 2014:127049

    Google Scholar 

  7. Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3(3):613–626

    Article  CAS  Google Scholar 

  8. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74

    Article  CAS  Google Scholar 

  9. Seydibeyoglu MO, Mohanty AK, Misra M (2017) Fiber technology for fiber-reinforced composites. Woodhead Publishing

    Google Scholar 

  10. Li Z, Cheng X, He S, Shi X, Gong L, Zhang H (2016) Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos A Appl Sci Manuf 84:316–325

    Article  CAS  Google Scholar 

  11. Li Z, Gong L, Cheng X, He S, Li C, Zhang H (2016) Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater Des 99:349–355

    Article  CAS  Google Scholar 

  12. Li Z, Gong L, Li C, Pan Y, Huang Y, Cheng X (2016) Silica aerogel/aramid pulp composites with improved mechanical and thermal properties. J Non Cryst Solids 454:1–7

    Article  CAS  Google Scholar 

  13. Linhares T, de Amorim MTP, Durães L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7(40):22768–22802

    Article  CAS  Google Scholar 

  14. Ghica ME, Almeida CM, Fonseca M, Portugal A, Durães L (2020) Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems. Polymers 12(6):1278

    Article  CAS  Google Scholar 

  15. Maleki H, Durães L, Portugal A (2014) Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater 197:116–129

    Article  CAS  Google Scholar 

  16. Berthon-Fabry S, Hildenbrand C, Ilbizian P (2016) Lightweight superinsulating resorcinol-formaldehyde-APTES benzoxazine aerogel blankets for space applications. Eur Polymer J 78:25–37

    Article  CAS  Google Scholar 

  17. Marchetta J, Sabri F, Williams D, Pumroy D (2018) Small-scale room-temperature-vulcanizing-655/aerogel cryogenic liquid storage tank for space applications. J Spacecr Rocket 55(4):1007–1013

    Article  CAS  Google Scholar 

  18. Hasan MA, Rashmi S, Esther ACM, Bhavanisankar PY, Sherikar BN, Sridhara N, Dey A (2018) Evaluations of silica aerogel-based flexible blanket as passive thermal control element for spacecraft applications. J Mater Eng Perform 27(3):1265–1273

    Article  CAS  Google Scholar 

  19. Raja SN, Basu S, Limaye AM, Anderson TJ, Hyland CM, Lin L, Alivisatos AP, Ritchie RO (2015) Strain-dependent dynamic mechanical properties of Kevlar to failure: structural correlations and comparisons to other polymers. Mater Today Commun 2:e33–e37

    Article  CAS  Google Scholar 

  20. Ertekin M (2017) Aramid fibers. Fiber Technology for Fiber-Reinforced Composites. Elsevier, Amsterdam, pp 153–167

    Chapter  Google Scholar 

  21. Maleki H, Durães L, An P (2015) Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J Phys Chem C 119(14):7689–7703

    Article  CAS  Google Scholar 

  22. Ismail Saltuk NA, Stevens C, Cengiz C (2019) ASTM D945–16 and the AYO-IV Yerzley mechanical oscillograph can improve rubber compounding and molding operations. Rubber World 259(4):44–47

    Google Scholar 

  23. ASTM D945–16, Standard Test Methods for Rubber Properties in Compression or Shear (Mechanical Oscillograph). (2016). https://doi.org/10.1520/D0945-16

  24. ECSS-Q-ST-70–04C, Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies (2008). European Cooperation for Space Standardization (ECSS), Noorwijk, The Netherlands.

  25. ECSS-Q-ST-70–02C, Thermal vacuum outgassing test for the screening of space materials (2008). European Cooperation for Space Standardization (ECSS), Noorwijk, The Netherlands.

  26. Venkataraman M, Xiong X, Novotna J, Kašparová M, Mishra R, Militký J (2019) Thermal protective properties of aerogel-coated kevlar woven fabrics. J Fiber Bioeng Inform 12(2):93–101

    Article  Google Scholar 

  27. Mukherjee M, Kumar S, Bose S, Das C, Kharitonov A (2008) Study on the mechanical, rheological, and morphological properties of short Kevlar fiber/s-PS composites. Polym Plast Technol Eng 47(6):623–629

    Article  CAS  Google Scholar 

  28. Villar-Rodil S, Paredes J, Martínez-Alonso A, Tascón J (2001) Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of Nomex aramid fibers. Chem Mater 13(11):4297–4304

    Article  CAS  Google Scholar 

  29. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R′′ Si (OR′) 3 precursors. J Mol Struct 919(1–3):140–145

    Article  CAS  Google Scholar 

  30. Torres RB, Vareda JP, Lamy-Mendes A, Durães L (2019) Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels. J Supercrit Fluids 147:81–89

    Article  CAS  Google Scholar 

  31. Petrov O, Furó I (2011) A study of freezing–melting hysteresis of water in different porous materials Part I: Porous silica glasses. Microporous Mesoporous Mater 138(1–3):221–227

    Article  CAS  Google Scholar 

  32. Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22(10):773–782

    Article  CAS  Google Scholar 

  33. Maleki H, Montes S, Hayati-Roodbari N, Putz F, Huesing N (2018) Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure—an approach towards 3D printing of aerogels. ACS Appl Mater Interfaces 10(26):22718–22730

    Article  CAS  Google Scholar 

  34. Yuan B, Zhang J, Mi Q, Yu J, Song R, Zhang J (2017) Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol–gel process. ACS Sustain Chem Eng 5(11):11117–11123

    Article  CAS  Google Scholar 

  35. He S, Sun G, Cheng X, Dai H, Chen X (2017) Nanoporous SiO2 grafted aramid fibers with low thermal conductivity. Compos Sci Technol 146:91–98

    Article  CAS  Google Scholar 

  36. Xu G, Li M, Wu T, Teng C (2020) Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React Funct Polym 154:104672

    Article  CAS  Google Scholar 

  37. Lakatos Á, Trnik A Thermal characterization of fibrous aerogel blanket. In: MATEC Web of Conferences, 2019. EDP Sciences, p 01001.

  38. Woignier T, Primera J, Alaoui A, Despetis F, Calas-Etienne S, Faivre A, Duffours L, Levelut C, Etienne P (2020) Techniques for characterizing the mechanical properties of aerogels. J Sol-Gel Sci Technol 93(1):6–27

    Article  CAS  Google Scholar 

  39. Liu W, Huan Y, Dong J, Dai Y, Lan D (2015) A correction method of elastic modulus in compression tests for linear hardening materials. MRS Commun 5(4):641

    Article  CAS  Google Scholar 

  40. ECSS-Q-70–71A Rev.1—Space product assurance—Data for selection of space materials and processes (2004). European Cooperation for Space Standardization.

  41. Rocha H, Lafont U, Semprimoschnig C (2019) Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration. Acta Astronaut 165:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed by University of Coimbra under the project AeroXTreme (CENTRO-01-0145-FEDER-029533)—“High-performance silica aerogel nanocomposites for insulation under extreme temperature Space environments”, co-funded by Foundation for Science and Technology (FCT) and by the European Regional Development Fund (ERDF), through Centro 2020—Regional Operational Program of the Centre of Portugal. We kindly thank Professor Benilde Costa for providing the SEM facilities used in the analysis of the fibres. Access to TAIL-UC facility, funded under QREN-Mais Centro Project ICT-2009-02-012-1890, is gratefully acknowledged. We also would like to thank to Teijin Aramid GmbH (Wuppertal, Germany) for kindly offer the fibres Twa, Tch and Teij.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Durães.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, C.M.R., Ghica, M.E., Ramalho, A.L. et al. Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. J Mater Sci 56, 13604–13619 (2021). https://doi.org/10.1007/s10853-021-06142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06142-3

Navigation